Integral Methods to Solve the Variable Coefficient Nonlinear Schrödinger Equation
نویسنده
چکیده
In this paper, we use two different integral techniques, the first integral and the direct integral method, to study the variable coefficient nonlinear Schrödinger (NLS) equation arising in arterial mechanics. The application of the first integral method yielded periodic and solitary wave solutions. Using the direct integration lead to solitary wave solution and Jacobi elliptic function solutions.
منابع مشابه
An Integral Form of the Nonlinear Schrödinger Equation with Variable Coefficients
We discuss an integral form of the Cauchy initial value problem for the nonlinear Schrödinger equation with variable coefficients. Some special and limiting cases are outlined.
متن کاملNumerical quasilinearization scheme for the integral equation form of the Blasius equation
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
متن کاملNumerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions
In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...
متن کاملStructured Matrix Numerical Solution of the Nonlinear Schrödinger Equation by the Inverse Scattering Transform
The initial-value problem for the focusing nonlinear Schrödinger (NLS) equation is solved numerically by following the various steps of the inverse scattering transform. Starting from the initial value of the solution, a Volterra integral equation is solved followed by three FFT to arrive at the reflection coefficient and initial Marchenko kernel. By convolution these initial data are propagate...
متن کاملNumerical solution of general nonlinear Fredholm-Volterra integral equations using Chebyshev approximation
A numerical method for solving nonlinear Fredholm-Volterra integral equations of general type is presented. This method is based on replacement of unknown function by truncated series of well known Chebyshev expansion of functions. The quadrature formulas which we use to calculate integral terms have been imated by Fast Fourier Transform (FFT). This is a grate advantage of this method which has...
متن کامل